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A weighted implicit �nite volume model is developed to simulate two dimen-

sional di�usion ow in arbitrarily shaped areas. The model uses a mixture of

unstructured triangles and quadrilaterals to discretize the domain, and a mixture

of cell wall types to describe structures, levees, and ow functions that charac-

terize two dimensional ow. The implicit formulation makes the model stable

and run faster with very large time steps. The sparse system of linear equations

that result from the implicit formulation is solved using iterative solvers based

on various pre-conditioned conjugate gradient methods. The model was tested

under a variety of conditions. The results were compared to results from known

models applied to axisymmetric and other test problems that had known solu-

tions.

The model was successfully applied to the Oxbow section of the Kissimmee River

in Florida, and the results were compared with results from physical and numer-

ical modeling studies. This analysis indicated that the circumcenter based ow

function for walls used in the model gives overall superior results in all the cases

considered. Results of the numerical experiments showed that the use of weighted

implicit methods and iterative solvers provide modelers with improved exibility

and control of the overall accuracy and the run time. The method is to be used

as an e�cient solution method for local and regional modeling problems in South

Florida.

INTRODUCTION

Simulation of overland ow is an important function of large scale hydrologic models. Many
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such models, including the NSM (Natural System Model) and the SFWMM (South Florida

Water Management Model), which are used to simulate the hydrology of South Florida, are

based on solving approximate forms of the St. Venant equations to simulate overland ow.

An ideal model for the simulation of 2-D overland ow is expected to handle water bodies of

arbitrary shape and may have to use a wide range of temporal and spatial features to meet

accuracy requirements at di�erent locations and times. Some of the historic developments

related to this goal are described in the texts by Abbott (1979), Tan (1992), and Chaudhry

(1993). The features that make models useful for practical applications include the ability

to handle wetting and drying; the ability to simulate ow through structures such as weirs,

gates and culverts; and the ability to handle tributary and slough inows.

The earliest 2-D models used to solve St. Venant equations were based on various explicit

�nite di�erence methods and rectangular grids. Liggett and Woolhiser (1967), Chow and

Ben-Zvi (1973), and Katopodes and Strelko� (1978) developed some of the early models.

More recently, complete equation models have been developed that are capable of handling

the inertia terms better, and can produce better results for dam-break types of dynamic

problems. Fennema and Chaudhry (1990), and Garcia and Kahawita (1989) have developed

two such models. Finite element and �nite volume methods are useful when the ow domain

is arbitrary and the discretization is non-uniform. Fenner (1975), and Akanbi and Katopodes

(1988) developed models based on the �nite element method and Zhao, et al. (1994) used

a �nite volume method for solving the complete equations. Most of the complete equation

models that use irregular grids require a long time to run, and are ine�cient to use in large

scale hydrologic applications such as modeling of the Everglades in which the inertia term is

negligible. The challenge of maintaining both �ne spatial resolutions and low run times can

be met by using di�usion ow models in which the inertia terms are neglected. In di�usion

ow models, one equation is solved for the water level, instead of the three coupled equations

that form the St Venant equations.
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Ponce, et al. (1978) established a theoretical range of applicability for di�usion ow

models. Such models have been applied in the past by Xanthopoulos and Koutitas (1976)

to simulate ood wave problems, by Akan and Yen (1981) to study channel conuence ow

problems and by Hromadka, et al. (1985) to study dam failure problems. These studies

showed that di�usion ow models can be used successfully to simulate a variety of natural

ow conditions. Hromadka et al. (1987) also used a 2-D di�usion ow model to compare

overland ow models. Di�usion ow models have been used successfully to simulate hydro-

logic conditions in the Everglades, using the NSM and the SFWMM models developed by

the South Florida Water Management District (Fennema, et al. 1994).

A �nite volume method is useful for South Florida because many of the post-drainage

features in the area take the shape of polygons bounded by levees and canals. It satis�es

strict mass balance because of the conservative property. The basic idea behind the �nite

volume method involves using the conservative form of the di�erential equation, integrating

it over a �nite volume, and using the Gauss' theorem to convert results into surface inte-

grals which can then be discretized (Hirsch, 1988). During the computation of these surface

integrals along the cell walls, functions de�ning average wall uxes are needed. Two types

of functions are used in this paper, one using a line integral, and the other based on the

circumcenters (centers of the circumscribing circles) of triangles. In the case of structures

or any other ow features, these wall functions are replaced with structure or other types

of equations. When a cell centered �nite volume method is used with rectangular grids, the

�nite volume method collapse to a �nite di�erence method.

The ordinary di�erential equations resulting from the �nite volume formulation can be

solved using a weighted implicit method. The weighting factor that is used in many 1-D

models such as DAMBRK (Fread, 1973, 1988) provides control over accuracy and stability,

and makes it possible to produce solutions even under sti� conditions. The �nal solution of

the �nite volume method involves the solution of a sparse system of linear equations at every
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time step. The availability of a variety of sparse solver methods and packages has made it

possible to exercise control over the run time and accuracy.

Both direct and iterative methods are available to solve sparse systems. Iterative meth-

ods, such as the preconditioned conjugate gradient method are less susceptible to round

o� error, and are more e�cient for large problems (Aziz and Settari, 1979). Some of the

public domain sparse solvers available through the Internet include SLAP (Seager, 1988),

Templates (Barrett, 1993) and IML++ (Dongarra, 1995). Numerous pre-conditioners are

used with sparse solvers to speed up the convergence, and sometimes to make the solution

feasible. When ow conditions are somewhat steady due to negligible disturbances from

rainfall and other events, iterative solvers need very few iterations. This feature can make

the current model run extremely fast except during unsteady events.

Hydrologic models applied to the South Florida landscape are expected to simulate both

large scale ow features in the Everglades and small scale ow features in urban areas. They

are expected to carry out of both long and short term simulations in relatively short run

times. This paper describes the formulation, numerical testing, numerical error analysis,

and the successful application of the model to a portion of the Kissimmee river. A number

of additional tests are carried out to study the variation in numerical error with spatial

and temporal discretizations. Results demonstrate the fast performance of the model when

compared to explicit models. The results are also useful in deciding the spatial discretization

and the time step length required in future applications of the model to other areas in

South Florida. Some results shown at low resolutions give additional information about the

behavior of numerical errors in the model output.

GOVERNING EQUATIONS

Overland ow is described using the depth averaged ow equations commonly referred to as

Saint Venant equations. These equations consist of a continuity equation and momentum
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equations. The two dimensional continuity equation for shallow water ow is

@h

@t
+
@(hu)

@x
+
@(hv)

@y
�RF + IN + ET + qea = 0 (1)

in which, u and v are velocities in x and y directions; h = water depth in units L; RF =

rainfall intensity; IN = in�ltration rate; ET = evapotranspiration rate, all in units L=T ;

qea = volume rate of overland ow entering or leaving canals, measured per unit cell area

per unit time. The momentum equations used in the x and y directions are

@(hu)

@t
+
@(u2h)

@x
+
@(uvh)

@y
+ hg

@(h+ z)

@x
+ ghSfx = 0 (2)

@(hv)

@t
+
@(uvh)

@x
+
@(v2h)

@y
+ hg

@(h+ z)

@y
+ ghSfy = 0 (3)

in which, Sfx and Sfy = components of friction slopes in x and y directions. The momentum

equations can be combined with the continuity equation without the source term to produce

the following vector momentum equation

@V

@t
+r(

1

2
V 2 + gH) + g~Sf +V � ! = 0 (4)

in which ! = r � V; V = ui + vj = ow velocity vector; ~Sf = friction slope vector;

H = h + z = water level above the datum; z = bottom elevation above datum. The steps

followed in obtaining the equation are presented by Panton (1984). Equation (4) can be

integrated along a ow line to obtain the commonly used energy equation. The �rst term

in (4) which is the local acceleration term, and the second term which is the convective

acceleration term are responsible for inertia e�ects. The �rst term is neglected in slowly

varying ow to obtain di�usion ow equations. ! is neglected in shallow irrotational ow.

Equation (4) then reduces to

rE = �~Sf (5)

which can also be written in terms of the x and y components as @E

@x
= �Sfx and

@E

@x
= �Sfy

in which, E = h+ z + V 2=(2g) = H + V 2=(2g) = the energy head above the datum. Equa-

tion (5) without the velocity head in E is normally used as the foundation of di�usion ow

formulations, in which, the water levelH is used instead of the energy head E (Hromadka, et
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al., 1987). Even if all the equations that follow are expressed in terms of H, it can be shown

that H in these equations can be replaced with E to give the necessary equations for con-

ditions under which the velocity heads are important. This simple conversion is possible in

slowly varying ow if @

@t
(V 2=2g) is small. Use of E instead of H helps to recover some of the

lost inertia e�ects in slowly varying di�usion ow at converging and diverging boundaries.

Unfortunately, di�usion ow models using the velocity head generate small oscillations in

unsteady ow problems (Strelko�, et al., 1977), and it becomes necessary to use H instead

of E for such problems.

The friction slope ~Sf in (5) is computed using an equation for wetlands (Kadlec and

Knight, 1996) or a general form of the Manning equation written as V = 1

nb
hS�

f in which

nb = Manning coe�cient when  = 2/3 and � = 1/2; V =
p
v2 + u2 = magnitude of the

velocity vector. In di�usion ow, Sf = Sn is assumed in which Sn = slope of the water

surface (or the energy surface when E is used) computed as
q
(@H
@x
)2 + (@H

@y
)2. Akan and Yen

(1981), and Hromadka et al. (1987) used the following equation to compute u and v.

u = �
K

h

@H

@x
; v = �

K

h

@H

@y
(6)

K can be expressed for the Manning equation in general form as

K =
1

nb
h+1S��1

n for � � 1 and jSnj > �s (7)

K = K0 for � < 1 and jSnj � �s (8)

K0 = h+1=(nb�1��s ) provides continuity in function K, and gives a smoother ow pro�le for

some problems, than K0 = 0 used by Hromadka (1985). h = 0 for dry cells. �s is used to

bound K within �nite limits. �s � 10�10 is used in the study for test cases in single precision.

� � 1 gives laminar-like ow. K is useful in linearizing and simplifying the di�usion ow

equation. The continuity equation (1) can be expressed using (6) as

@H

@t
=

@

@x
K
@H

@x
+

@

@y
K
@H

@y
+ S (9)
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in which, S = RF � IN �ET � qea is the source term. When the velocity head is included,

H in (9) is replaced with E as explained earlier. The equation can be solved for both surface

ow and saturated groundwater ow using many of the methods used to solve parabolic

equations.

The �nite volume method

In the �nite volume method, (1) is expressed in the following integral form over arbitrary

control volumes or cells, cv.

@

@t

Z
cv
H dv +

Z
cv

"
@

@x
(hu) +

@

@y
(hv)� S

#
dv = 0 (10)

in which, dv = volume of element cv. The Gauss's divergence theorem can be used to

simplify the second volume integral term of (10) and make it a surface integral (Hirsch,

1988). Equation (10) for all the �nite volume cells can be written in vector form as

�A:
dH

dt
= Q(H) + S (11)

in which, H = [H1;H2; : : :Hm : : :Hnc]T , a vector containing the heads in all the cells; S =

the source term in vector form; �A = a diagonal matrix whose element �A(m;m) is equal

to the cell area �Am in the case of a cell m; Q and S are the net inows and source terms

to cells. The net inow rate to a cell m is given by

Qm(H) =
nsX
r=1

(�F:n)r �lr (12)

�lr = length of the side r of the ns sided polygon; n = nxi + nyj = unit outward normal

vector for the face r of the polygon; �F = average ux rate across the wall per unit length

de�ned as hu i+hv j, which is also equal to �K~rH for free surface di�usion ow or ground

water ow. Two alternative methods are used in the model to compute �F for overland ow.

They are the line integral based method suggested by Hirsch (1988), and the circumcenter

based method suggested by Cordes and Putti (1996). In the case of structures and levees,

Qm(H) is computed using the appropriate structure equations instead of the above two

methods. In the current cell centered �nite volume approach, H; ET; RF and IN are
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de�ned as cell average values.

The line integral based method for computing the wall ux

This method can be used with both triangular and quadrilateral cells. Using this method,

the approximate ux �Fr for a wall r in (12) is computed using uxes at the nodes de�ning

the wall. In Fig. 1,

�F = 0:5(F̂j + F̂k) (13)

in which F̂j and F̂k are the uxes at the nodes j and k computed using �K~rH in which,

~rH is computed using an integral equation around the nodes (Hirsch, 1988).

Z
v

~rH da =
I
s
Hndl (14)

in which, dl = length of the sides of the polygon, referred to as the "shadow polygon", with

cell centroids at vertices. Using (14), ux F̂j for a node j can be expressed as

F̂j = �Kj(~r ~H)j = �
Kj

2�Âj

2
4� npX

p=1

Hp(yp+1 � yp�1)i+
npX
p=1

Hp(xp+1 � xp�1)j

3
5 (15)

in which, p = 1; 2; : : : ; np are the cell numbers around the node j forming the vertices of the

shadow polygon; xp; yp are the coordinates of these vertices. In the equation, x0; y0 at p = 1

have to be replaced by xnp; ynp, and xnp+1; ynp+1 at p = np have to be replaced by x1; y1 to

carry out the integration correctly. Areas of the shadow polygons �Âj are computed using

a similar line integration.

2�Âj =
npX
p=1

xp(yp+1 � yp�1) (16)

Kj are computed using (7) and (8). The nodal values of nb and h used in the equations are

obtained by weighted averaging the values of surrounding cells. Respective cell areas are

used as weights. The line integrals are computed counter clockwise as positive.

In the use of the weighted implicit implementation, Q(H) = [Q1; Q2 : : :Qnc]T of (11)

is linearized as M:H. Matrix M contains information about the connectivity among cells,

geometry, and the roughness. Matrix M is built by computing the ow rates across all the
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walls using (12), and adding or subtracting appropriate volumes from the cells. Consider

the volume lost by donor m, crossing wall r de�ned by nodes j and k. Equations (12), (13)

and the line integral around node j obtained using (15) makes the following modi�cation to

M.

Mm;p !Mm;p �
Kj �lr

4�Âj

[�nxr(yp+1 � yp�1) + nyr(xp+1 � xp�1)] ; p = 1; :::; np (17)

nxr; nyr = components of n for wall r; �lr = length of wall r. A similar expression is needed

for node k. Flow into the receiver cell n also requires two similar expressions with negative

signs placed on (nxr; nyr).

The circumcenter based method for computing wall ux

Cordes and Putti (1996) showed the equivalence of a low order mixed �nite element method

based on RT0 elements (Raviart and Thomas, 1977) with a �nite volumemethod for triangles

under certain conditions. Because of the equivalence, it is possible to use an expression

derived for the mixed �nite element method to compute ow rates for the �nite volume

method. In the equivalent �nite volume method, water levels at circumcenters are used in

the computation of ow across walls. In the mixed �nite element method, water levels in

triangles are assumed to be linearly varying, and the water level at the centroid is considered

as the average water level. Using Figure 2 as the de�nition sketch, (F̂:n)r for wall r in (12)

is computed as

(F̂:n)
r
= �lrKr

Hm �Hn

�dmn

(18)

in which, �dmn = distance between circumcenters of trianglesm and n; Hm,Hn are the heads

at the circumcenters. Kr is computed using (7) or (8). The depth and the bed roughness

needed to compute Kr are obtained by weighted averaging the depth and bed roughness of

cells m and n. Sn is computed using

Sn =

vuut(Ĥj � Ĥk)2

�l2r
+
(Hm �Hn)2

�d2mn

(19)

in which, Ĥj and Ĥk are the heads at nodes j and k, computed as weighted averages of

surrounding heads. The cell areas are used as weights in the averaging. In the semi-implicit
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formulation, computation of ow from a cell n to m involves the modi�cation of the following

matrix element as it receives water in cell m.

Mm;n !Mm;n +
Kr�lr
�dmn

; Mm;m !Mm;m �
Kr�lr
�dmn

(20)

Elements Mn;m, Mn;n are modi�ed similarly due to water losses from the donor cell n. The

circumcenter based method can be used only with acute angled triangles. When this method

is used with obtuse angled triangles, the circumcenter falls outside the triangle, and the nu-

merical error tend to be large. With rectangles, the method becomes equivalent to the �nite

di�erence method.

The average water velocity in a cell is computed using the following vector basis function

developed for RT0 mixed elements of Raviart and Thomas (1977), and used by Cordes and

Putti, (1996).

~v =
1

2A h

2
64Qs1

0
B@ x� x̂1

y � ŷ1

1
CA+Qs2

0
B@ x� x̂2

y � ŷ2

1
CA +Qs3

0
B@ x� x̂3

y � ŷ3

1
CA
3
75 = �K~rH (21)

in which, Qs1; Qs2; Qs3 = discharge rates out of the cell walls s1; s2 and s3; (x̂i; ŷi) = the

coordinates of the nodes; (x; y) = coordinates of any point, including the circumcenter in the

current case at which the head is computed. In the case of right angled triangles, Putti (1996)

showed that the mixed �nite element method is equivalent to a �nite di�erence method.

Flow through structures and levees

When the model is used to simulate structure ows, the speci�c cell walls are replaced with

structure type walls, and ow rates of Qs(H) are used in (12) instead of F:n to compute

structure ows. Linearization of structure ow equations can be carried out either prior to

the run using regression methods, or during the run using data from previous calls to the

routine. Qs(H) is computed as a function of adjacent water levels, gate openings, and other

physical parameters. Assuming that the variation of Qs versus �H (�H = Hm � Hn) is

linear during two consecutive time steps, a structure equation can be developed using the
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information collected during the time steps p and p � 1.

Qs(�H) = Qp
s +Ks(�H ��Hp) for �Hp 6= �Hp�1 (22)

Qs(�H) = Qp
s otherwise

in which,Ks = (Qp
s�Q

p�1
s )=(�Hp��Hp�1); p = the time step count. If only the information

at time step p are used, (22) reduces to Qs(�H) = Ks �H, and the right hand side of the

system of equations does not have to be modi�ed. The introduction of a structure between

cells m and n modi�esM as Mm;n !Mm;n+Ks, Mm;m !Mm;m�Ks, Mn;m !Mn;m+Ks,

and Mn;n ! Mn;n �Ks as in (20). In the computations, it was assumed that the head loss

due to bed friction is negligible when compared to head loss across structures. If iterations

are carried out within a time step, the linearization will not introduce errors in the solution.

Since rapid ow variations are not expected in di�usion ow, the linearization gives good

results even for nonlinear structures.

When there is a structure or a levee type cell wall, the two dimensional ow in adjacent

cells are a�ected and become closer to one dimensional. The following equation based on

the Manning equation is applied between cells across a wall under this condition.

Q1d = Kn�H =
h+1�lr
nb�d

�
�H

�d

���1
�H (23)

in which, nb; h are averaged between cells; �d = distance between the cell centroids. Cen-

troids are used to represent cell locations in restricted spaces or closer to structures and

dry cells where free 2-D ow cannot be assumed, and slope Sn of the water surface pro�le

cannot be determined accurately. For these cells, Kn is computed by assuming that the

water surface slope Sn in the Manning equation is approximately equal to �H
�d

.

Boundary conditions

One boundary condition is needed with di�usion ow at each boundary. Speci�ed head and

speci�ed ow are the most commonly used types. The no-ow type boundary is implemented

simply by making �F = 0 in (12). MatrixM needs no modi�cation under no-ow conditions.
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In the case of a known inow rate QI into a cell i through the boundary or due to pumping

activity, row i of source term S in (11) has to be modi�ed as

Si ! Si +QI (24)

Source term quantities such as rainfall, ET and in�ltration are summed up similarly for cell i.

If the ow domain is connected to an external reservoir as the boundary condition, and

if the reservoir water level is H0, the equation for ow rate into the domain Qo is linearized

as Qo = Ko(Ho �Hi) in which Ko is similar to the structure constant Ks in (22) and Ho

and Hi are water levels of the water body and the cell. The modi�cations for matrixM and

vector S are Mi;i ! Mi;i � Ko. and Si ! Si + KoHo. Implementation of head boundary

conditions is explained later.

Formulation of the weighted implicit method

The ordinary di�erential equations (11) derived using the �nite volume method are solved

using the following weighted �nite di�erence formulation.

�Ai H
n+1
i = �Ai H

n
i +�t[�Qn+1

i + (1� �)Qn
i ] + �t[�Sn+1

i + (1� �)Sn
i ] (25)

in which, Hn
i = average surface water level in cell i at time step n; � = time weighting factor;

� = 0 and 1 for explicit and implicit problems. Using linearization, (25) can be expressed

as the following system of linear equations.

[�A���tMn+1]:�H = �t[Mn]:Hn+�t(1��)[Mn �Mn+1]:Hn+�t[�Sn+1 + (1��)Sn]

(26)

in which, Qn = Mn:Hn. The solution �H is used to update the heads using Hn+1 =

Hn +�H. The matrix P = [�A � ��tMn+1] is so far symmetric. In many gradually

varying problems, Mn+1 is replaced with Mn to simplify (26) (Akan and Yen, 1981). Test

runs show that this is a useful procedure for many problems. If this assumption is not

made, then Mn+1 has to be updated using an iterative procedure within the time step, by

�rst computing �H using (26) with the most recent estimates of Mn+1, and next updating
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Hn+1. Iterations are continued similarly by updatingMn+1 and using (26) until convergence.

Examples used in the paper need only 2-4 iterations for the convergence of the water level

up to 4 signi�cant digits. This type of iterations were not used in the current application.

Imposition of a head boundary condition to a cell i as Hi = HB is carried out by recon-

�guring row i of P. The entire row i is modi�ed using

Pi;j = 0 for j = 1; 2; : : : nc; j 6= i (27)

Pi;j = 1 for j = 1; 2; : : : nc; j = i

Si = HB �Hn
i

Matrix P is sparse for large problems. The element density is less than 1% for a 1000

cell discretization. When � = 0, �H in (26) can be computed using a simple matrix multi-

plication. � = 0.5 gives a higher accuracy as in the case of Crank Nicholson type schemes.

With rectangular grids, the �nite volume method gives the �nite di�erence solution.

Solution of the linear equations

The number of equations in the system of linear equations in (26) is equal to the number

of cells, nc. If the cells are non-uniform and the physical properties are non-homogeneous,

the problem may become sti� and the matrix �A � ��tM may become ill-conditioned.

However, many fast e�cient iterative sparse solvers that can handle ill-conditioned matrices

have recently become available. The current model was tested with the SLAP solver (Sea-

ger, 1988) and the PetSc solver (Smith, 1995). Both solvers use iterative conjugate gradient

methods and preconditioners. Preconditioners are useful in improving the convergence rate

and the solvability. Without preconditioning, the number of iterations increase with the

condition number. The condition number of a matrix is the ratio of the largest and smallest

eigenvalues. If the system of equations become di�cult to solve with the choices of sparse

solvers, �t can be reduced until A � ��tM becomes well-conditioned. The need to re-run

the code due to non-convergence can sometimes be avoided by reusingM with a smaller �t.

13



Active research is under way to develop faster sparse solvers. A feature available with

faster packages gives the ability to solve equations at each time step as a sequential process,

and incrementally improve the solution starting from the solution of the previous time step.

Without such methods, the same or nearly the same equations may still have to be solved

repeatedly at steady or near-steady conditions, wasting computer resources. Many of the new

features in solvers can make the model run much faster during such events, by carrying out

the minimum required updating from one time step to the next, using only a few iterations,

depending on the extent of transient ow activities.

NUMERICAL TESTS

The model was tested for accuracy by applying it to a number of test problems with known

solutions. The �rst test was used to check the ability of the �nite volume method to solve

di�usion equations accurately. The second test was carried out with 2-D di�usion type

overland ow. The remaining tests were designed to carry out numerical error and stability

analysis.

Test 1

An example from the text book on groundwater ow by Wang (1982) was used for the �rst

test. In the test, a pumping well was positioned at the center of the 4000 m � 4000 m square

shaped con�ned aquifer having a constant transmissivity (K� aquifer depth) of 300 m2=day

and a storage coe�cient of 0.002. A uniform initial water level of 10 m, and a constant

pumping rate of 2000 m3=s were assumed. The triangular discretization used with the model

is the same as that shown later in Fig. 5 with 238 cells, except that the linear dimensions

are scaled down to �t the area into the 4000 m � 4000 m square. The MODFLOW model

(McDonald and Harbaugh, 1984) was set up to simulate the same ow conditions using a

40 � 40 square grid with 1600 cells. Figure 3a shows the water level contours at the end

of 30 days, obtained using the circumcenter based �nite volume method. Figure 3b shows

the same contours obtained using the MODFLOW model. Drawdown curves at a number

of monitoring points are shown in Fig. 4. The �nite volume method using the line integral

based ow function failed to produce convex water level contours close to the well, and the
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results are not shown. The test shows that the circumcenter based �nite volume method

using only 238 cells can produce relatively accurate solutions. Test also shows that the

circumcenter based method gives better results than the line integral based method under

locally converging ow.

Test 2

An axisymmetric overland ow problem was used in the second test. The ow characteristics

of this test are somewhat similar to the ow characteristics of the Everglades. The test bed

has dimensions 160.9 km � 160.9 km (100 miles � 100 miles) and a at bottom. The initial

condition is

H =
�
0:4575 + 0:1525 cos(

�r

rmax

)
�
m for r � rmax (28)

H = 0:305 m otherwise (29)

in which, r = distance from the domain center; rmax = 32188 m. The Manning roughness is

assumed as 1.0; RF , IN and ET are neglected. An axisymmetric di�usion ow model was

developed based on the following axisymmetric continuity equation to obtain an extremely

accurate solution for the problem using a �ne resolution.

@(hr)

@t
+
@(uhr)

@r
= 0 (30)

This solution was used in computing small numerical errors in the �nite volume model under

di�erent resolutions. A model similar to the 1-D model by Akan and Yen (1981) after a few

modi�cations, was used to solve (30) accurately. The test involved a 12 day simulation of

the water level using both the axisymmetric model and the �nite volume model. �r = 80.47

m and �t = 1 min. were used with the axisymmetric model to obtain the water level in

the problem accurate enough to compute numerical errors in other models. The error at

the center was used for comparison purposes because the error is largest at this point. The

water level computed accurately at the center is 0.442105 m. The expected circular shapes

in the solution was also used to test accuracy of the �nite volume models.
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The �nite volume model using the circumcenter based approach was used with discretiza-

tions of di�erent re�nements to recreate the results of the axisymmetric model. The results

obtained using a discretization of 238 cells and 135 nodes, and a time step of 3 hrs is shown

in Fig. 5. The SLAP 2.0 sparse solver package (Seager, 1988) was used to solve the lin-

ear equations, and convergence was assumed when the largest error in the solution vector

�1 < 0:3 � 10�4m. Other parameter values used were, � = 0.5 and �s = 1:0 � 10�10 (in

equations (7) and (8)). The �gure shows the grid used, and the contour plot of water levels

after 12 days. The water level at the center of the circular patch, and at cells at radial

distances of r =11885 m and r = 31000 m were monitored during the simulation. Figure 6

shows the general agreement of water levels at all the monitoring points computed using

both the axisymmetric model and the �nite volume model. Figure 6 also shows the solution

at r = 0 obtained using a �nite volume model running with a time step of 3 hrs, and a higher

resolution obtained using 1536 cells. As seen in the �gure, the �nite volume solution very

closely matches with the axisymmetric solution at this high resolution.

Numerical error and stability

Accuracy of the results obtained from a numerical model depend on the spatial and temporal

discretizations used. If a model is used to simulate ow features of a certain wave length,

the resolution of the mesh should be su�cient to capture that wave length. A description of

the variation of the numerical error with the spatial and temporal resolutions is provided by

Lal (1996). To understand the behavior of the numerical error in the current �nite volume

model, triangular meshes of di�erent levels of discretization were used in the simulation of

the ow pattern used in the previous test case. The GMS software package (1995) was

used to generate meshes for this test. An estimate of the numerical error was obtained for

comparison purposes by presenting the numerical error at r = 0 after 12 days as a percentage

of the depth at t = 0. Numerical error was computed by using the previously mentioned

axisymmetric solution as the true solution because it has an error term much smaller than

the error studied. Table 1 shows a summary of test results for the center obtained using

circumcenter based methods. Run times shown are for a SUN Sparc 20 (speed 90 MHz, 4.1
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Mops/s measured with the linpack benchmark test, Dongarra, 1993). The iterations shown

are the iterations inside the SLAP2.0 solver indicating the computational e�ort. In the

table, �x was computed as
p
�Ac in which �Ac is the average area of a triangular cell. � is

obtained as k�x in which, k is the wave number of the water surface pro�le simulated in the

model = 2�=(wavelength). Term �=� gives an estimate of the spatial resolution, measured

as the average number of spatial divisions within half the wave length of a sinusoidal water

surface pro�le. � is the non-dimensional time step size, is computed based on the analysis

by Lal (1996).

� =
h

5

3

nb
p
Sn

�t

�x2
(31)

� < 0:25 for explicit �nite di�erence methods. Test 0 correspond to the test shown in Fig-

ures 5 and 6 for 238 cells. Results of test 12 with 1536 cells is also shown in Fig 6. Table 1

shows that the solution of the �nite volume model approaches the axisymmetric solution as

both spatial and temporal resolutions get �ner. This is true when the model is using the line

integral based method too. Table 1 also shows that the run time decreases and the number

of iterations per time step increases when the time step is increased.

A test was carried out to check the stability of the model under explicit conditions for

which � = 0. Experimentation with di�erent time steps showed that �t at the points of

incipient instability of the tests was approximately 52 hrs, 4.3 hrs and 3.5 hrs respectively

with 116, 376 and 1536 cell con�gurations shown in Table 1. These time steps correspond to

approximate � values of 0.06, 0.02 and 0.05 respectively. Incipient instability was assumed

when dynamic oscillations were visible at the center of the solution. These results con�rm,

for example, that the tests 8-11 in Table 1 obtained for � = 0:5 are unstable under explicit

conditions. The approximate stability limit � � 0:04 is useful in selecting the time steps for

explicit model runs. Nonlinear instability was not studied during the test.

Numerical tests were carried out to determine the convergence behavior of the �nite vol-

ume code, and the inuence of the �s in (8) on the performance of the code. Tests showed
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that the number of iterations increased when �s was decreased to very low values, because

some of the K values in the matrix became very large (Lal, et al, 1996), and the matrix

became more unconditional as a result. The solution errors at the center after 12 hrs were

1 mm, 21 mm, and 88 mm as �s was changed to 10�6, 10�5 and 10�4 respectively. A large

�s causes the model to use (8) instead of (7) more often. �s = 10�10 was used in the axisym-

metric ow test, and �s = 10�4 was used in the Kissimmee study that is explained later.

Di�erent sparse solver options in the SLAP 2.0 package were tested while running test 0

referred to in Table 1. The purpose of the test was to investigate the performance of di�er-

ent solvers and pre-conditions. In the SLAP 2.0 package, the incomplete LU decomposition

with conjugate gradient (CG) solver, incomplete LU biconjugate gradient solver, and the

incomplete LU biconjugate gradient solver with LU decomposition were reliable, and used

the least number of iterations. The last option was used in the test. The number of solver

iterations changed with the solver type and �s which a�ects the condition number of the

matrix. With large time steps, the SLAP 2.0 solver converged only when large � values are

used. The recently developed PetSc solver (Smith, et al., 1995) was found to be much more

reliable and fast for larger problems.

Application to the Kissimmee River

The model was applied to the an experimental area near weir no. 2 of the Kissimmee River

Basin, Florida, using the same discretization and the bed roughness used by Zhao et at.

(1994). In the application by Zhao, et al., an unsteady ow model RBFVM-2D was used

over the test area shown in Fig. 7, which is approximately 1402 m � 1036 m. In the �g-

ure, a ood canal passes from the North to the South (left to right in the �gure), and a

one-notch weir is located near the upstream end near C1 to divert part of the ow into the

river oxbow. The Manning coe�cients of the ood plain, main channel and the river oxbow

are 0.03, 0.025 and 0.04 respectively. The number of nodes and cells in the mixed grid

used by the RBFVM-2D model and the line integral based �nite volume model are 347 and
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327 respectively. The same numbers in the case of the circumcenter based method are 347

and 634 respectively. For the circumcenter based method, the quadrilaterals were divided

to make triangles. The results of the problem for an inow of 221 m3=s at the upstream

boundary and a stage of 13.57 m at the downstream boundary are shown in Fig 7, after

running the model until a reasonably steady state is reached. The results were obtained

after including the velocity head V 2=(2g) in (5). When the same simulation was carried out

after neglecting the velocity head, the water level at C1 dropped by 1 cm. Water levels at

other locations remained practically unchanged. Figure 7 shows contours of water levels,

and the water level monitoring points. The elliptical patch of contours in the �gure shows a

small dry area. Figure 8 shows the velocity vectors drawn at the circumcenters using (21).

The apparent overlap of arrows in the plot is due to the near right angled triangles in the

grid, which make the circumcenters nearly overlap. Figure 9 shows the results of the same

test obtained using the line integral based method.

Comparison of water levels and water velocities in Table 2 shows that the water levels

obtained using the current model agree with the physical model results and the RBFVM-2D

model results at many locations. However velocities at O2 representing a narrow canal seg-

ment of the Oxbow obtained using di�usion ow models did not agree with other velocities.

Comparison of the circumcenter based method with the line integral based method show

that both methods produced similar ow patterns in the Kissimmee application unlike in

the test cases with a locally convergent or divergent ow �elds in which the line integral

method produce unacceptable local results. This is because the averaged �F in (13) does not

provide a very accurate estimate of discharges across walls in acute angled triangles. Certain

velocities close to the boundary are not shown in Table 2 because line integrals could not be

computed with this method very close to the boundary.

With the Kissimmee application, it was also found that the line integral method required

approximately 50 iterations when using 20 s time steps and the SLAP conjugate gradient
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method using LU decomposition preconditioner. The circumcenter method required approx-

imately 200 iterations for the same case. The run time for the current model is a small

fraction of the run time of explicit models such as RBFVM2D requiring 1-2 s time steps.

PetSc solver (Smith, 1995) used with a new C++ version of the current model can cut down

the iterations to less than 5 with even larger time steps, and make the model run much faster.

With the development of better and faster external sparse solvers using parallel processing

and other method, large scale application of the model to South Florida continue to become

inexpensive, just with free upgrading of the solver.

SUMMARY AND CONCLUSIONS

An implicit �nite volume model was developed to simulate di�usion ow across arbitrarily

shaped landscapes. Tests were carried out to verify the results of the model by comparing

them with results obtained from the MODFLOW model, and an axisymmetric model. The

model was also applied to a variety of test problems, using a range of spatial and tempo-

ral discretizations to study the behavior of numerical errors. Results show that numerical

errors tend to become smaller with �ner discretizations, thus con�rming the numerical con-

sistency condition. The explicit option (� = 0:0) showed incipient instability when the

non-dimensional time step � exceeds approximately 0.04. The implicit option was stable

with large values of �. Results show that by selecting a spatial resolution (�=�) of more

than about 3 divisions per half sine wave, numerical errors for the test problems can be

reduced to less that 1%.

The model used di�erent wall types to represent structure ows, no ows, and 2-D ows.

Flow across 2-D walls were computed using a line integral based method and a circumcenter

based method. Results show that the circumcenter based method produced better results

under all the conditions tested, and that the line integral based methods produced local

errors when used with triangular discretizations to simulate locally convergent or divergent

ow patterns. The line integral based method becomes the choice when polygons and not
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triangles are used in the discretization. This method also needed fewer iterations inside the

solver when used with test problems. Application of both methods to the Kissimmee River

shows that the results agree with the results of the physical model and the RBFVM-2D

model. The same application showed that while the RBFVM-2D model needed 1-2 s time

steps, the current model could be run faster with time steps over 10 times as large even with

older solvers, and many more times faster with modern solvers.

The structure of the current �nite volume model allows new wall ow function types to

be added to the existing circumcenter and line integral types, and new structure types to

be added in the same way. This feature is useful for future extensions of the model into

more complicated areas of South Florida and the Everglades. Increasingly powerful sparse

solvers can continue to speed up the computations in the future and make it possible to

simulate ows with much �ner spatial resolutions and larger time steps otherwise possible,

as demonstrated in the examples.
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DEFINITION OF VARIABLES

Variable De�nition

E energy head (m).

�Fr average ux vector across the wall r.

F̂k ux vector at a node k.

g gravitational acceleration.

H average water levels of all the cells, in vector form (m).

Ĥ water levels at the nodes (m).

h depth of water (m).

K hydraulic conductivity (m/s).

M matrix obtained after linearizing Q.

n unit normal to a wall.

nb Manning roughness coe�cient.

Q(H) inow into all the cells, in vector form.

Qs ow rate across a structure.

S source or sink terms for all the cells, in a vector form.

~Sf friction slope vector.

Sn slope of the water surface or the energy surface.

V ow velocity vector.

u; v x and y components of ow velocity (m/s).

x,y space coordinates (m).

x̂,ŷ nodal coordinates.

z ground elevation above datum (m).

�A a diagonal matrix with the cell areas at the diagonals.

�Ai area of cell i
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Variable De�nition

�Âi area of shadow cell i

�dmn distance between circumcenters of triangles m and n.

�lr length of wall r.

�s slope below which only an approximate Manning eq. is used.

�t time step (s).
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Table 1: Solutions of the test problems using various discretizations. Results of test 0 with non-homogeneous

cells are shown in Figs 5 and 6. CPU is an abbreviation for central processing unit time.

Test No. elem. No. nodes CPU (s) No. iter. �x (m) �t (s) hend (m) �=� � � %

1 116 69 2.4 18 14939 51840 0.4488 2.15 0.016 1.09

2 116 69 8.8 12 14939 10368 0.4484 2.15 0.003 1.03

3 116 69 16.4 11 14939 5184 0.4484 2.15 0.002 1.02

4 376 209 6.0 40 8298 207360 0.4450 3.88 0.212 0.48

5 376 209 25.1 19 8298 20736 0.4446 3.88 0.021 0.40

6 376 209 43.6 17 8298 10368 0.4444 3.88 0.011 0.38

7 376 209 78.8 13 8298 5184 0.4444 3.88 0.005 0.37

8 1536 809 60.1 104 4105 518400 0.4540 7.84 2.166 1.96

9 1536 809 75.3 78 4105 207360 0.4449 7.84 0.866 0.48

10 1536 809 98.3 67 4105 103680 0.4450 7.84 0.433 0.48

11 1536 809 258.0 35 4105 20736 0.4439 7.84 0.087 0.29

12 1536 809 436.0 27 4105 10368 0.4437 7.84 0.043 0.27

0 238 135 27.7 1 10429 5184 0.4390 0.50 0.49
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Table 2: Comparison of physical model results with the results of the �nite volume models

using circumcenter based walls and line integral based walls. Results of the �nite RBFVM-2D

model by Zhao, et al. (1994) are also shown.

Gage Physical model RBFVM-2D model Circum. meth. Line int. Meth.

Velocity Stage Velocity Stage Velocity Stage Velocity Stage

m/s m m/s m m/s m m/s m

C1 0.30 13.87 0.29 13.78 0.24 13.87 { 13.85

C3 0.23 13.57 0.21 13.60 0.26 13.66 { 13.62

C4 0.23 13.57 0.25 13.60 0.25 13.61 0.28 13.61

C5 0.23 13.57 0.29 13.57 0.25 13.60 0.29 13.59

C6 0.23 13.57 0.31 13.58 0.27 13.57 0.27 13.58

C7 0.29 13.57 0.33 13.69 0.21 13.57 { 13.57

O1 0.85 13.67 0.67 13.69 0.98 13.77 0.70 13.73

O2 0.49 13.67 0.44 13.64 0.06 13.60 0.14 13.64
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LIST OF FIGURES

Fig. 1: A diagram showing the de�nition of variables used in the line integral method.

Fig. 2: A diagram showing the de�nition of variables used in the circumcenter method.

Fig. 3 a: Drawdown contours obtained using the �nite volume model.

Fig. 3 b: Drawdown contours obtained using the MODFLOW model.

Fig. 4: Variation of drawdown with time at di�erent distances.

Fig. 5: A contour plot of the water levels in the axisymmetric test problem.

Fig. 6: Variation of the water level with time in the axisymmetric test problem.

Fig. 7: A contour plot of the water levels in the Kissimmee river, obtained using the cir-

cumcenter method.

Fig. 8: A vector plot of the water velocities in the Kissimmee river obtained using the

circumcenter based walls.

Fig. 9: A contour plot of the water levels in the Kissimmee river, obtained using the line

integral based walls.
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Fig. 8: A vector plot of the water velocities in the Kissimmee river obtained using the

circumcenter based walls.
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Fig. 9: A contour plot of the water levels in the Kissimmee river, obtained using the line

integral based walls.
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